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1. 

Low frequency (plane wave) sound propagation in flow duct systems is a problem of
considerable practical interest. Over the years a number of papers have been published on
the subject and nowadays several codes based on acoustic 2-port (or four-pole) methods
are available, e.g., LAMPS [1] and SID [2]. For a background of the basic theory behind
acoustic 2-ports, the papers by Davies [3, 4] and the book by Munjal [5] are recommended.
In using 2-port methods a number of different formulations, depending on the choice of
input and output state variables, are possible. The most commonly used formalism is
obtained by choosing the acoustic pressure and volume velocity (or mass flow) at the two
openings, respectively, as input and output state variables. This leads to the so-called
transfer-matrix formalism, a method that is especially suited to treat problems with one
preferred direction for the acoustic energy flow, corresponding to a number of cascade
coupled 2-ports: e.g., as in intake and exhaust systems on automobiles [4, 5]. Although the
transfer-matrix formalism is less suited for more general networks with arbitrary couplings,
it has also been used for such applications [6]. For duct or pipe systems with a large number
of branches and loops, alternative formalisms have been suggested by Frid [7] and
Eversman [8]. Frid suggested a mobility-matrix formalism that uses the acoustic pressure
at each of the two openings as input state variables. The output state variables are chosen
as the corresponding acoustic volume velocities. With the mobility-matrix formalism it is
possible to assemble easily the complete mobility-matrix for a complex network. However,
this is not unique, since simple assembly procedures seem to exist independent of the choice
of formalism, as demonstrated both by the paper by Eversman [8] and the results presented
in this work. However, the mobility-matrix method will, with continuity in pressure and
volume velocity assumed at each joint in a network, reduce the problem to the smallest
possible number of unknowns (=number of joints). The method developed by Eversman
[8] is based on a scattering-matrix formalism that uses travelling wave amplitudes as state
variables. This type of formalism is attractive since it reflects the fundamental wave guide
nature of the problem. Eversman’s method is also well suited for generalization and can
be said to be the basis for this work. One problem with all works cited above is the lack
of general source models. Sources are normally only included as simple 1-port elements
at a termination or sometimes coupled to a joint [7]. Very few published works seem to
exist which allow for active 2-port elements in a network or for a general source
arrangement at a joint. For a complete modelling of many flow duct systems the possibility
to include sources inside the system is very important: e.g., to model in-duct fans and flow
constrictions in pipes. It can be noted in this context that measurement methods to
characterize both 1- and 2-port acoustic sources exist today. For a recent review of this
subject together with a discussion of models for flow duct sources in general, see the paper
by Bodén and A� bom [9].
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Figure 1. Example of a graph representation of a network of acoustical 2-ports. The network consists of nine
2-ports and seven joints (or node points). The arrows define the direction of mean flow for each 2-port. Note,
for later reference that each 2-port is associated with two nodes.

It is the objective of this note to develop a general formalism for the analysis of sound
propagation in 2-port networks. The formalism will allow for active 2-port elements as
well as a general source arrangement at each joint: i.e., the joints will be regarded as active
multi-ports.

2.  2- 

2.1. General
A system of duct or pipes that connects a number of fluid machines and various muffler

elements (which can be active or passive) can for low frequencies, when the acoustic field
in the connecting ducts is of plane wave type, be represented as a network of acoustical
2-ports. These 2-ports are connected at joints (or nodes, in graph terminology) which are
modelled as acoustic multi-ports with an order corresponding to the number of 2-ports
that meet at a joint. The topological structure of any 2-port network and the corresponding
physical system can be represented by a directional graph, as illustrated in Figure 1. With
reference to Figure 1, it can be seen that, for instance, node no. 2 represents an acoustical
4-port (because four 2-ports meet at this node). Similarly, node number 3 is a 3-port, node
number 7 is a 1-port and so forth. As illustrated in Figure 1, to describe a network each
2-port is assigned an integer number 1, 2, 3, . . . , M, where M is the total number of
2-ports. Similarly, the nodes (joints) are numbered from 1 to N, where N is the total
number of nodes. To create a mathematical formalism for network analysis it is first
necessary to write down the equations describing each 2-port and each node.

2.2. Description of a 2-port
The state of an acoustic 2-port can be completely defined by prescribing two pairs (one

at each port) of plane wave state variables. If these state variables are taken as the
travelling plane wave amplitudes as shown in Figure 2 then, in the frequency domain, the
relationship defining an active 2-port can be written as [9]

0p−1

p−21m

=Sm 0p+1

p+21m

+0ps
−1

ps
−21m

, (1)

Figure 2. Definition of positive directions for 2-port number m, the port numbers have been chosen so that
the direction of mean flow is from 1 to 2.
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Figure 3. The definition of positive directions for node number n. The total number of 2-ports connected to
this node is mn , which corresponds to the order of the multi-port associated with the node. Note that the positive
directions have been chosen away from the node in order to comply with the definition used for the 2-ports.

where p+/− is the complex (Fourier) pressure amplitude for a plane wave in the
positive/negative direction, S is the [2×2] scattering-matrix, m denotes the number of the
2-port in a given network and the superscript s denotes source strength. The elements of
the S-matrix are given by

Sm =$S11,m

S21,m

S12,m

S22,m%. (2)

For each of the M 2-ports of a network, equation (1) can be applied, which will give a
total of 2M equations for 4M unknowns (all the amplitudes p+/−). To find the extra 2M
equations needed to obtain a complete problem, it is necessary to consider the equations
describing the nodes.

2.3. Description of a node
In order to describe a node, the sign conventions illustrated in Figure 3 are adopted and

it is assumed that each node behaves as an acoustic multi-port, with an order equal to the
number of 2-ports connected to the node. This assumption implies that at each of the ports
belonging to a node the sound field can be completely described in terms of plane waves.
It is also assumed that each port of a node is associated with the same cross-section in
the actual duct system as the 2-port port to which it is connected. Furthermore, these
cross-sections should be chosen so that continuity of the state variables is satisfied. The
requirements for plane waves and continuity will restrict the ways in which the
cross-sections defining the ports can be chosen in a duct system. The following relationship
can now be written down to describe the behaviour of a node in the frequency
domain:

Sn
+pn

+ =Sn
−pn

− + pns. (3)*

Here p+/− are [mn ×1] column vectors, where the kth element is the complex amplitude
for a plane wave in the positive/negative direction at port number k and S+/− are [mn ×mn ]
scattering matrices associated with the positive/negative waves. The introduction of a
scattering matrix for each direction of propagation in equation (3) is somewhat arbitrary,
but is convenient because it means that matrix inversions can be avoided when deriving
the multi-port equations for a node (see the Appendix). Of course, if preferred it is certainly

* Note that in equation (3) the source strength vector (with superscript s) cannot be interpreted as a wave in
the positive direction and accordingly the subscript + has been omitted.
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possible directly to extend the definition in equation (2) to the multi-port case. For later
use, the following notation for the elements of the S+/− matrices is also introduced: Sn

−kl

and Sn
+kl. For each of the N nodes of a network equation (3) can be applied, and this will

give a total of

s N
n=1 mn =2M

equations, since each 2-port belongs to two nodes; see Figure 1. In other words, if
equations (1) and (3) are applied for all 2-ports and nodes, respectively, in a network, a
total of 4M equations for the 4M unknown pressure amplitudes are obtained.

2.4. Derivation of the complete network equation
In this section, the equations for the 2-ports and the nodes will be assembled into a

complete network equation. First, all the unknown pressure amplitudes of the network are
put into two [2M×1] column vectors,
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pc
− = ··· and pc

+ = ··· . (4, 5)

0p−1

p−21M 0p+1

p+21M

By using these vectors all the 2-port equations for a network can formally be written as
one matrix equation,

pc
− =Scpc

+ + pcs
−, (6)

where pcs
− is a column vector containing the source strengths and

S1 0 · · 0

0 S2 · ·

Sc =G
G

G

G

G

K

k

· · · · · G
G

G

G

G

L

l

.

· · · 0

0 · · 0 SM

The next step is to rewrite the node equations by introducing the state vectors for the
complete network (equations (4) and (5)). To do this it is necessary to have the relationship
between the state vectors used at a certain node and the state vectors for the complete
network. This relationship can be defined by introducing a [mn ×2M] projection matrix
Gn, which satisfies

pn
+/− =Gnpc

+/−. (7)
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Although not necessary, but as it will facilitate the final matrix assembling in the problem,
it will now be assumed that the local ordering of the ports at each node have been chosen
so that it corresponds to (in growing order) the numbers of the 2-ports connected to the
node. As an example, when using this convention, the state vectors associated with node
number 2 in the network illustrated in Figure 1, are

p−2,2 p+2,2

p−2,4 p+2,4

p2
− =G

G

G

F

f
p−2,5

G
G

G

J

j

and p2
+ =G

G

G

F

f
p+2,5

G
G

G

J

j

,

p−1,7 p+1,7

where the first index defines which 2-port port (1 or 2) that is connected and the second
index denotes the number of the connected 2-port. From this result it follows directly that
the [4×18] projection matrix for node number 2 is given by

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
G2 =G

G

G

K

k
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

G
G

G

L

l

.

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

By introducing equation (7) in equation (3), the following result is obtained for node
number n:

Sn
+Gnpc

+ =Sn
−Gnpc

− + pns. (8)

By using equation (6) it is possible to rewrite equation (8) so that it involves only the
amplitudes in the positive directions as unknowns:

Sn
+Gnpc

+ =Sn
−GnScpc

+ +Sn
−Gnpcs

− + pns. (9)

If equation (9) is applied at all nodes a total of 2M equations (as noted above) are obtained,
which corresponds to the number of unknowns in the vector pc

+. By assembling these
equations a complete matrix equation for the network can be generated. Formally, this
assembly procedure can be described by

$sn (Sn
+Gn −Sn

−GnSc)%pc
+ =$sn Sn

−Gn%pcs
− +0sn pns1, (10)

where the summation symbolizes an assembly procedure which in the nth step adds the
next mn rows to the matrix equation. This means that for n=1 the rows 1 to m1 are added,
for n=2 the rows m1 +1 to m1 +m2 are added and so on until the complete matrix with
2M rows has been assembled. Due to the special structure of the projection matrices, it
is possible to express the assembly procedure in terms of a simple algorithm which will
require no matrix multiplications. This question will be addressed in the next section.

2.5. An algorithm for assembling the network matrix equation
In order to derive this algorithm it is necessary to introduce a formalism to describe the

topology of a 2-port network. This can be done by defining the so-called graph matrix
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G. The G-matrix has a row for each node of a network and a column for each 2-port.
The order of the matrix is therefore [N×M] and the elements are defined by

g(n, m)= 8 1,
0,

−1,

if port no. 1 of the mth 2-port is coupled to the nth node
if the mth 2-port is not coupled to the nth node
if port no. 2 of the mth 2-port is coupled to the nth node9. (11)

The relationship between the G-matrix and the earlier discussed projection matrices
matrices Gn is easily seen. As an example, the G-matrix for the network illustrated in
Figure 1 is given by

1 1 0 0 0 0 0 0 0

0 −1 0 −1 −1 0 1 0 0

−1 0 1 1 0 0 0 0 0

G=G
G

G

G

G

G

G

K

k

0 0 −1 0 1 1 0 0 0 G
G

G

G

G

G

G

L

l

.

0 0 0 0 0 −1 0 1 0

0 0 0 0 0 0 −1 −1 1

0 0 0 0 0 0 0 0 −1

By studying the matrix multiplications in equation (10) it is straightforward to derive the
following simple rules for assembling the different parts of the network matrix equation.
By inspection of the nth row of the G-matrix the next mn rows of the matrix equation are
generated, where mn is the number of elements in the nth row different from 0. The elements
of the kth row of these mn new rows are, for the left side of equation (10),

step n :

$sn (Sn
+Gn −Sn

−GnSc)% ---#
mn new rows

column no.:

8 (2m−1)
Sn

+kl −Sn
−klS11,m

−Sn
−klS21,m

2m
−Sn

−klS12,m ,
Sn

+kl −Sn
−klS22,m ,

g(n, m)q 0
g(n, m)Q 09, (12)

and, for the right side,

step n : column no.:

---#$sn Sn
−Gn% 8(2m−1)

Sn
−kl

0

2m
0,

Sn
−kl ,

g(n, m)q 0
g(n, m)Q 09, (13)

mn new rows

where l denotes that g(n, m) is the lth element different from 0 in row n and
k, l=1, 2, 3, . . . , mn . The remaining columns for the rows generated by node number n
will only contain zeros. Since the node source vector on the right side of equation (10)
is in a form which allows direct assembling, it has been left out in the description. Equation
(10) plus the assembling procedure described in this section represents the solution to the
problem of obtaining a general equation for analysis of acoustic 2-port networks. When
the resulting network equation is solved, the state vector pc

+ for the complete network is
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obtained. From this and the 2-port equation for the complete network (equation (6)) the
state vector pc

− can be calculated. When both pc
+ and pc

− have been calculated the complete
acoustic state of the network is known and all quantities of interest can be obtained: e.g.,
acoustic energy flows in various parts.

3. 

The formalism presented here is more general than earlier treatments of acoustical 2-port
networks. In particular, the formalism allows for arbitrary source arrangements since both
the 2-ports as well as the joints (the nodes) in a network are allowed to be active. Regarding
the size of the resulting matrix equation, the suggested formalism is more efficient than
the method suggested by Eversman [8]. In particular for a completely general network the
formalism described here reduces the problem to 2M unknowns, while Eversman’s method
leads to 4M unknowns (both pc

+ and pc
−). For a general network the assembled matrix on

the left side of equation (10) will be full, which implies that the number of operations
necessary to solve the problem will be proportional to M3. Therefore compared to
Eversman’s method the number of operations necessary to solve a general network will
be reduced (for large systems) by a factor of one eighth. This conclusion is valid even if
it is taken into account that (i) the assembling procedure of the method described here
is slightly more complex than in Eversman’s case, and (ii) to obtain the complete acoustic
state the vector pc

− must also be calculated. The first point* will only add a number of
operations proportional to M, and the second to M2; which for a large system will be
negligible compared to M3. For simpler systems which consists only of connected straight
pipes, modelled as plane wave acoustic elements, it can be shown that Eversman’s method
gives the same number of unknowns as the method suggested here. Regarding the
mobility-matrix method suggested by Frid [7], it gives a number of unknowns equal to N
which, since MeN−1 for all 2-port networks, always is less than 2M. This is the
minimum number of unknowns possible. However, the method is based on the assumption
of continuity of pressure and volume velocity at the nodes, and both the method suggested
here and Eversman’s method are works without this limitation.

Regarding how to find a suitable model for a node or a 2-port in a given network
references [2–9] should be consulted. One simple model for nodes is also discussed in the
Appendix.



This work was carried out under contract from the National Swedish Board for
Technical Development (NUTEK); project no. P1850-3.



1. K. S. P 1995 Proceedings of Euro-Noise ’95, 791–796. LAMPS software for the acoustic
analysis of silencers.

2. R. G 1994 Doctoral thesis from MWL, Department of Vehicle Engineering, Royal Institute
of Technology, Stockholm. On acoustic modelling of silencers.

3. P. O. A. L. D 1988 Journal of Sound and Vibration 124, 91–115. Practical flow duct
acoustics.

4. P. O. A. L. D 1996 Journal of Sound and Vibration 190, 677–712. Piston engine intake and
exhaust system design.

5. M. L. M 1987 Acoustics of Ducts and Mufflers. New York: Wiley-Interscience.

* It is assumed that there is an upper (fixed) limit for the multi-port order of the nodes, i.e., max (mn) exists.



   746

6. C. W. S. T 1984 Journal of Sound and Vibration 96, 175–194. The acoustic simulation and
analysis of complicated reciprocating compressor piping systems, I: Analysis technique and
parameter matrices of acoustic elements.

7. A. F 1989 Journal of Sound and Vibration 133, 423–438. Fluid vibration in piping systems-a
structural mechanics approach, I: theory.

8. W. E 1987 Transactions of the American Society of Mechanical Engineers Journal of
Vibrations, Acoustics, Stress and Reliability in Design 109, 168–177. A systematic procedure for
the analysis of multiply branched acoustic transmission lines.

9. H. B́ and M. A�  1995 Acta Acustica 3, 549–560. Modelling of fluid machines as sources
of sound in duct and pipe systems.

:      

Here a multi-port model for a node (see Figure 3) will be derived. To simplify the
problem the following idealizations are made: (i) only plane waves are considered; (ii) the
acoustic pressure is continuous across the node; (iii) the total acoustic mass flow is
conserved at the node; (iv) the node is connected to a 1-port source. The first assumption
means that inertia effects associated with non-propagating higher order modes are
neglected. The second and third assumptions imply that the node is acoustically compact
and that compressibility effects and entropy fluctuations are negligible. The fourth
assumption implies that the pressure pn at the node and the total mass flow qn out from
the node, can be related by the 1-port equation [9]

pn = pns
0 −Zn

sqn, (A1)

where pns
0 is the source strength and Zn

s is the source impedance associated with node
number n. Based on these assumptions, the following equations can be written down

1
Zn

1
( pn

1+ − pn
1−)+ · · ·+

1
Zn

mn

( pn
mn+ − pn

mn−)= qn

g
G

G

G

G

F

f

pn
1+ + pn

1− = pn
2+ + pn

2− h
G

G

G

G

J

j

···

. (A2)

pn
(mn −1)+ + pn

(mn −1)− = pn
mn+ + pn

mn−

Here Zn
k is the characteristic impedance* at port number k. The continuity of pressure

across the node also implies that

pn
1+ + pn

1− = pn. (A3)

By using equations (A1) and (A3) it is now possible to rewrite equation (A2) in a form
corresponding to the multi-port definition given in equation (3):

1
Zn

1
+ 1

Zn
s

1
Zn

2
· · 1

Zn
mn

pn
1+

=

1
Zn

1
− 1

Zn
s

1
Zn

2
· · 1
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1−
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0

1
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s

. (A4)
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mn+ 0 · 0 −1 1 pn
mn− 0

* When acoustic pressure and mass flow are used as state variables the characteristic impedance (=the
impedance experienced by a propagating plane wave) is given by c/A, where c is the speed of sound and A is
the cross-sectional area of the duct.
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The advantage with the definition given in equation (3) is clear from this result: i.e., because
a matrix inversion (of Sn

+) and then a multiplication (with a full matrix) would be necessary
if the standardmulti-port definition [9] had been used. It can also be noted that for this simple
model of a node the assembling of the network matrix equation can be simplified since the
matrices Sn

+ and Sn
− have almost a band structure. This means that in equations (12) and

(13) for ke 2, only elements with l= k−1 and l= k need to be considered.


